Corrigé Interro 1

Exercice 1

1. $f: t \mapsto \frac{1}{t^4-1}$ est continue positive sur $[2, +\infty[$.

Or $f(t) \sim \frac{1}{t^4}$ et $\int_2^{+\infty} \frac{1}{t^4} dt$ converge, car c'est une intégrale de Riemann, avec $\alpha = 4 > 1$. Donc par équivalence $\int_2^{+\infty} \frac{1}{t^4} dt$ converge.

2. $ft \mapsto \frac{1}{\sqrt{t(t+1)}}$ est continue et positive sur $]0, +\infty[$.

En 0^+ , $f(t) \sim \frac{1}{\sqrt{t}}$ et $\int_0^1 \frac{dt}{\sqrt{t}} dt$ converge car c'est une intégrale de Riemann en 0^+ avec $\alpha = \frac{1}{2} < 1$. Donc par équivalence $\int_0^1 f(t)dt$ converge.

En $+\infty$, $f(t) \sim \frac{1}{\sqrt{t}t}$ et $\int_1^{+\infty} \frac{1}{\sqrt{t}t} dt$ converge car c'est une intégrale de Riemann en $+\infty$ avec $\alpha = \frac{3}{2} > 1$.

Donc par équivalence $\int_1^{+\infty} f(t)dt$ converge Conclusion : $\int_0^{+\infty} f(t)dt = \int_0^1 f(t)dt + \int_1^{+\infty} f(t)d$ converge.

3. $f: t \mapsto \frac{1}{\sqrt{e^t - 1}}$ est continue et positive sur $]0, +\infty[$.

En 0^+ , f(t) = 1 + t + o(t) donc $e^t - 1 \sim t$ et par conséquent $f(t) \sim \frac{1}{\sqrt{t}}$, donc comme ci-dessus $\int_0^1 f(t) dt$

En $+\infty$, $f(t) \sim \frac{1}{+\infty} = e^{-\frac{1}{2}t}$ et $\int_1^{+\infty} e^{-\frac{1}{2}t} dt$ converge car c'est une intégrale de référence. Donc par

équivalence $\int_1^{+\infty} f(t)dt$ converge. Ainsi, $\int_0^{+\infty} f(t)dt = \int_0^1 f(t)dt + \int_1^{+\infty} f(t)d$ converge.

Exercice 2 La fonction $f: t \mapsto sin(t)e^{-2t}$ est définie et continue sur $[0, +\infty[$. Pour justifier son intégrabilité

sur cet intervalle, on étudie sa convergence absolue sur cet intervalle. $\forall t \in [0, +\infty[, |f(t)| \le e^{-2t}]$. Or $\int_0^{+\infty} e^{-2t} dt$ converge, c'est une intégrale de référence. Donc par majoration $\int_0^{+\infty} |f(t)| dt$ converge, donc f est intégrable sur $[0,+\infty[$

Exercice 3 $f: t \mapsto \frac{arctan(t)}{t^2}$ est continue et positive sur $[1, +\infty[$. $arctan(t) \underset{+\infty}{\sim} \frac{\pi}{2}$ donc $f(t) \underset{+\infty}{\sim} \frac{\pi}{2t^2}$. Or $\int_1^{+\infty} \frac{1}{t^2} dt$ converge et par équivalence $\int_1^{+\infty} f(t) dt$ converge. Pour calculer cette intégrale on va faire une intégration par parties :

On pose
$$\begin{array}{ccc} '(t) = \frac{1}{t^2} \\ v(t) = arctan(t) \end{array} \Rightarrow \begin{array}{ccc} (t) = \frac{-1}{t} \\ v'(t) = \frac{1}{1+t^2} \end{array} .$$

Donc:

$$\begin{array}{l} \text{Or } \lim_{\lambda \to +\infty} \frac{\arctan(\lambda)}{\lambda} = 0 \text{ et } \lim_{\lambda \to +\infty} \frac{\lambda}{\sqrt{1+\lambda^2}} = 1 \text{ donc } \lim_{\lambda \to +\infty} \ln\left(\frac{\lambda}{\sqrt{1+\lambda^2}}\right) = 0. \\ \text{Ainsi } \int_1^{+\infty} \frac{\arctan(t)}{t^2} dt = \lim_{\lambda \to +\infty} \int_1^{\lambda} \frac{\arctan(t)}{t^2} dt = \frac{\pi}{4} + \frac{1}{2} \ln(2) \\ \end{array}$$